Centre No.			Paper Reference			Init	ial(s)					
Candidate No.			6	6	8	0	/	0	1	Signature		
		/01 EXC han ance y 1 J ² : 1 ho s require tical Forr for Quali- nanipula	ed for emulae (use any ification	G M dv 201 30 1 30 1	5C 4 and 12 – min nation ulator alculat bolic d	E E Ced - Mo utes - It allowe	ems in il ed by t ust no ntiatio	ng cluded he reg t have n/integ	l with ulation the fa	<u>question papers</u> ns of the Joint cility for symbolic	Examiner's u Team Leader's Questio Numbe 1 2 3 4 5 6	use only
Instructions to C In the boxes above Check that you hav Answer ALL the q You must write yo Whenever a numer When a calculator	, write your cover the correct uestions. ur answer to erical value of	question each que g is requ	n pape estion uired,	er. in the take g	space $g = 9.8$	e follo 3 m s ⁻²	wing	he que	estion		ıre.	
Information for A booklet 'Mather Full marks may be The marks for indi There are 6 question There are 28 pages	natical Formu obtained for vidual questions in this que	lae and answers ons and estion pa	s to AI the pa aper. T	LL qu irts of The to	estion quest tal ma	s. ions a ırk for	re sho this p	wn in aper is		brackets: e.g. (2)).	
Advice to Candi You must ensure th You should show a Answers without w	nat your answ sufficient worl	king to a	make	your r							_	
This publication may be reproduc Pearson Education Ltd copyright ©2012 Pearson Education Ltd. Printer's Log. No.		ith								II	Total Turi	n over
P40110A W850/R6679/57570 5/4/5/3/3 P 4 0 1 1 0 A 0 1 2 8 P 4 0 1 1 0 A 0 1 2 8 P 4 0 1 1 0 A 0 1 2 8												

PMT June 2012

		Leave blank
1.	A smooth uniform sphere S , of mass m , is moving on a smooth horizontal plane when it	
	collides obliquely with another smooth uniform sphere T , of the same radius as S but of	
	mass $2m$, which is at rest on the plane. Immediately before the collision the velocity of S	
	makes an angle α , where $\tan \alpha = \frac{3}{4}$, with the line joining the centres of the spheres.	
	Immediately after the collision the speed of T is V . The coefficient of restitution	
	between the spheres is $\frac{3}{4}$.	
	(a) Find, in terms of V, the speed of S	
	(i) immediately before the collision,	
	(ii) immediately after the collision.	
	(9)	
	(b) Find the angle through which the direction of motion of <i>S</i> is deflected as a result of the collision.	
	(4)	
2		

	PMT
June 2012	

	3
Question 1 continued	blank

РМТ June 2012

2. A ship <i>A</i> is moving at a constant speed of 8 km h ⁻¹ on a bearing of 150°. At noon a second ship <i>B</i> is 6 km from <i>A</i> , on a bearing of 210°. Ship <i>B</i> is moving due east at a constant speed. At a later time, <i>B</i> is 2√3 km due south of <i>A</i> . Find (i) the time at which <i>B</i> will be due east of <i>A</i>, (ii) the distance between the ships at that time. (13)			Leav blan
 At a later time, <i>B</i> is 2√3 km due south of <i>A</i>. Find (i) the time at which <i>B</i> will be due east of <i>A</i>, (ii) the distance between the ships at that time. 	2.	A ship A is moving at a constant speed of 8 km h^{-1} on a bearing of 150°. At noon a second	
Find(i) the time at which <i>B</i> will be due east of <i>A</i>,(ii) the distance between the ships at that time.		ship B is 6 km from A, on a bearing of 210° . Ship B is moving due east at a constant speed.	
(i) the time at which <i>B</i> will be due east of <i>A</i>,(ii) the distance between the ships at that time.		At a later time, B is $2\sqrt{3}$ km due south of A.	
(i) the time at which <i>B</i> will be due east of <i>A</i>,(ii) the distance between the ships at that time.		Find	
(ii) the distance between the ships at that time.			
		(i) the time at which B will be due east of A ,	
		(ii) the distance between the ships at that time.	
		(13)	

	PMT
June 2012	

	7 Turn ove
Question 2 continued	
Ouestion 2 continued	Leav blanl

PMT June 2012

Leave blank

3. Two particles, of masses *m* and 2*m*, are connected to the ends of a long light inextensible string. The string passes over a small smooth fixed pulley and hangs vertically on either side. The particles are released from rest with the string taut. Each particle is subject to air resistance of magnitude kv^2 , where *v* is the speed of each particle after it has moved a distance *x* from rest and *k* is a positive constant.

(a) Show that
$$\frac{d}{dx}(v^2) + \frac{4k}{3m}v^2 = \frac{2g}{3}$$

(b) Find v^2 in terms of x.

(c) Deduce that the tension in the string, T, satisfies

$$\frac{4mg}{3} \leqslant T < \frac{3mg}{2}$$

(5)

(6)

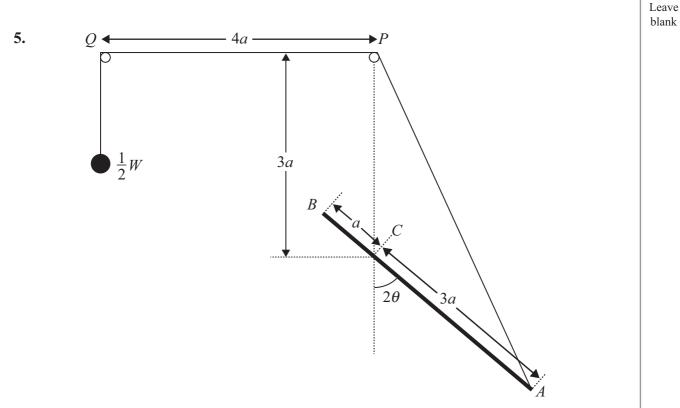
(5)

D	1	0	1	- 1	Δ	Λ	Δ	1	Δ	2	0	

	PMT
June 2012	

РМТ June 2012

		Leave blank
4.	A rescue boat, whose maximum speed is 20 km h ⁻¹ , receives a signal which indicates that a yacht is in distress near a fixed point <i>P</i> . The rescue boat is 15 km south-west of <i>P</i> . There is a constant current of 5 km h ⁻¹ flowing uniformly from west to east. The rescue boat sets the course needed to get to <i>P</i> as quickly as possible. Find	
	(a) the course the rescue boat sets,	
	(4)	
	(b) the time, to the nearest minute, to get to <i>P</i> . (4)	
	When the rescue boat arrives at P , the yacht is just visible 4 km due north of P and is drifting with the current. Find	
	(c) the course that the rescue boat should set to get to the yacht as quickly as possible, (1)	
	(d) the time taken by the rescue boat to reach the yacht from <i>P</i> . (1)	



	PMT
June 2012	

Question 4 continued	Lea bla

Turn over

PMT June 2012

Figure 1

A uniform rod *AB*, of length 4*a* and weight *W*, is free to rotate in a vertical plane about a fixed smooth horizontal axis which passes through the point *C* of the rod, where AC = 3a. One end of a light inextensible string of length *L*, where L > 10a, is attached to the end *A* of the rod and passes over a small smooth fixed peg at *P* and another small smooth fixed peg at *Q*. The point *Q* lies in the same vertical plane as *P*, *A* and *B*. The point *P* is at a distance 3a vertically above *C* and *PQ* is horizontal with PQ = 4a. A particle of weight $\frac{1}{2}W$ is attached to the other end of the string and hangs vertically below *Q*. The rod is inclined at an angle 2θ to the vertical, where $-\pi < 2\theta < \pi$, as shown in Figure 1.

(a) Show that the potential energy of the system is

$$Wa(3\cos\theta - \cos 2\theta) + \text{constant}$$

(4)

(b) Find the positions of equilibrium and determine their stability.

(8)

	PMT
June 2012	

	Leave blank
Question 5 continued	DIAIIK
	21

PMT 2012

June 2012

Leave blank

6. Two points A and B are in a vertical line, with A above B and AB = 4a. One end of a light elastic spring, of natural length a and modulus of elasticity 3mg, is attached to A. The other end of the spring is attached to a particle P of mass m. Another light elastic spring, of natural length a and modulus of elasticity mg, has one end attached to B and the other end attached to P. The particle P hangs at rest in equilibrium.

(a) Show that
$$AP = \frac{7a}{4}$$

The particle *P* is now pulled down vertically from its equilibrium position towards *B* and at time t = 0 it is released from rest. At time *t*, the particle *P* is moving with speed *v* and has displacement *x* from its equilibrium position. The particle *P* is subject to air resistance of magnitude *mkv*, where *k* is a positive constant.

(b) Show that

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + k \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{4g}{a} x = 0$$

(5)

(3)

(c) Find the range of values of k which would result in the motion of P being a damped oscillation.

(3)

	PMT
June 2012	

	Question 6 continued	Leave blank
25		
75		

